Math 246C Lecture 27 Notes

Daniel Raban

May 30, 2019

1 L^2 -Estimates for the $\overline{\partial}$ -Operator: The Density Lemma

1.1 The density lemma

In solving our $\overline{\partial}$ problem, we have

$$L^2(\Omega, e^{-\varphi_1}) \xrightarrow{T} L^2_{(0,1)}(\Omega, e^{-\varphi_2}) \xrightarrow{S} L^2_{(0,2)}(\Omega, e^{-\varphi_3}).$$

We want to show that

$$||f||_{\varphi_2} \le C(||T^*f||_{\varphi_1}^2 + ||Sf||_{\varphi_3}^2), \quad \forall f \in D(T^*) \cap D(S).$$

We had the following lemma:

Lemma 1.1 (Density lemma). Let (η_{ν}) be a sequence in $C_0^{\infty}(\Omega)$ such that $0 \leq \eta_{\nu} \leq 1$ and such that for any compact $K \subseteq \Omega$, $\eta_{\nu} = 1$ on K for all large ν . Assume that

$$e^{-\varphi_{j+1}}|\overline{\partial}\eta_{\nu}|^2 \le Ce^{-\varphi_j}, \quad \forall \nu, j = 1, 2.$$

Then $C_{0,(0,1)}^{\infty}(\Omega)$ is dense in $D(T^*) \cap D(S)$ with respect to the graph norm.

Proof. Step 1: Suppose $f \in D(T^*) \cap D(S)$ has compact support. Approximate by $f * \psi_{\varepsilon}$, where $\psi_{\varepsilon}(z) = \varepsilon^{-2n} \psi(z/\varepsilon)$ and $\psi \in C_0^{\infty}$.

Step 2: Let $f \in D(T^*) \cap D(S)$. We claim that $\eta_j f \in D(T^*) \cap D(S)$. To show that $\eta_j f \in D(S)$,

$$\overline{\partial}(\eta_j f) = \eta_j \underbrace{\overline{\partial} f}_{\in L^2_{\varphi_3}} + \underbrace{\overline{\partial} \eta_j \wedge f}_{\in L^2_{\varphi_3}}.$$

To show that $\eta_j f \in D(T^*)$, consider for $u \in D(T)$,

$$\langle Tu, \eta_j f \rangle_{\varphi_2} = \langle \eta_j Tu, f \rangle_{\varphi_2}$$

Observe that $\eta_j Tu = \eta_j \overline{\partial} u = \overline{\partial} (\eta_j u) - u \overline{\partial} \eta_j$, where $\eta_j u \in D(T)$.

$$= \langle T(\eta_{j}u), f \rangle_{\varphi_{2}} - \int u \langle \overline{\partial} \eta, f \rangle e^{-\varphi_{2}}$$
$$= \langle u, \eta_{j} T^{*} f \rangle_{\varphi_{1}} - \langle u, e^{\varphi_{1} - \varphi_{2}} \langle \overline{\partial} \eta, f \rangle \rangle_{\varphi_{1}}.$$

So

$$T^*(\eta_j f) = \eta_j T^* f - e^{-\varphi_1 - \varphi_2} \langle \overline{\partial} \eta, f \rangle.$$

We now check that $\eta_j f \to f$ in the graph norm.

- 1. $\eta_j f \to f$ in $L^2_{\varphi_2}$: This follows by the dominated convergence theorem.
- 2. $S(\eta_j f) \to Sf$ in L_{φ_3} : We have

$$S(\eta_j f) = \overline{\partial}(\eta_j f) = \underbrace{\eta_j \underbrace{Sf}_{\in L^2_{\varphi_3}}}_{\to Sf \text{ in } L^2_{\varphi_3}} + \underbrace{\overline{\partial}\eta_j \wedge f}_{\to 0 \text{ in } L^2_{\varphi_3}}$$

So we get that

$$\int \underbrace{|\overline{\partial}\eta_j|^2 e^{-\varphi_3}}_{\leq e^{-\varphi_2}} |f|^2 \to 0$$

by the dominated convergence theorem.

3.
$$T^*(\eta_j f) \to T^* f$$
 in $L^2_{\varphi_1}$ is similar.

1.2 Applying the lemma

Now let $\psi \in C^{\infty}(\Omega)$ be given by the locally finite sum

$$e^{\psi} = 1 + \sum_{\nu=1}^{\infty} |\overline{\partial} \eta_{\nu}|^2.$$

Let $\varphi_j = \varphi + (j-3)\psi$ for j = 1, 2, 3 (φ is to be chosen). With this choice of weights, we can satisfy the hypotheses of the density lemma.

We will now study our estimate

$$||f||_{\varphi_2}^2 \le C(||T^*f||_{\varphi_1}^{@} + ||Sf||_{\varphi_2}^2), \qquad f \in C_0^{\infty}.$$

Recall the formula for T^* :

$$T^*f = -e^{\varphi_1} \sum_{j=1}^{\infty} \partial_{z_j} (f_j e^{-\varphi_2}) = -e^{\varphi - 2\psi} \sum_{j=1}^{\infty} \partial_{z_j} (f_j e^{\psi - \varphi}).$$

Then

$$e^{\psi}T^*f = -\sum \delta_j f_j - \sum f_j \partial_{z_j} \psi, \qquad \delta_j := \partial_{z_j} - \partial_{z_j} \varphi.$$

Here, $-\delta_j$ is the adjoint of $\partial_{\overline{z}_j}$ in L^2_{φ} .

Consider

$$||T^*f||_{\varphi_1}^2 = \int |T^*f|^2 e^{-\varphi + 2\psi} = ||e^{\psi}T^*f||_{\varphi}.$$

Then, using Cauchy-Schwarz or the triangle inequality,

$$\left\| \sum \delta_j f_j \right\|_{\varphi}^2 = \left\| e^{\psi} T^* f + \langle f, \partial \psi \rangle \right\|_{\varphi}^2$$

$$\leq 2 \| T^* f \|_{\varphi_1}^2 + 2 \int |\langle t, \partial \psi \rangle|^2 e^{-\varphi}.$$

Compute $||Sf||_{\varphi_3}^2$:

$$Sf = \overline{\partial} f = \sum_{j < k} \left(\frac{\partial d_k}{\partial \overline{z}_j} - \frac{\partial f_j}{\partial \overline{z}_k} \right) d\overline{z}_j \wedge d\overline{z}_k.$$

So

$$||Sf||_{\varphi_3}^2 = \sum_{j < k} \int \left| \frac{\partial f_k}{\partial \overline{z}_j} - \frac{\partial f_j}{\partial \overline{z}_k} \right|^2 e^{-\varphi}$$

$$= \frac{1}{2} \sum_{j,k} \int \left| \frac{\partial f_k}{\partial \overline{z}_j} - \frac{\partial f_j}{\partial \overline{z}_k} \right|^2 e^{-\varphi}$$

$$= \int \sum_{j,k} \left| \frac{\partial f_k}{\partial \overline{z}_j} \right|^2 e^{-\varphi} - \left(\sum_{j,k} \frac{\partial f_j}{\partial \overline{z}_k} \frac{\overline{\partial f_k}}{\partial \overline{z}_j} \right) e^{-\varphi}$$

Add $||Sf||_{\varphi_3}^2$ to both sides of the inequality. We get the following estimate:

$$\left\| \sum \delta_j f_j \right\|_{\varphi}^2 - \sum_{j,k} \left\langle \partial_{\overline{z}_k} f_j, \partial_{\overline{z}_j} f_k \right\rangle_{\varphi} \le 2 \|T^* f\|_{\varphi_1}^2 + 2 \int |\langle f, \partial \psi \rangle|^2 e^{-\varphi} + \|Sf\|_{\varphi_3}^2.$$

The main point of the argument is that

$$\begin{split} \left\langle \delta_{j} f_{j}, \delta_{k}, f_{k} \right\rangle_{\varphi} - \left\langle \partial_{\overline{z}_{k}} f_{j}, \partial_{\overline{z}_{j}} f_{k} \right\rangle_{\varphi} &= - \left\langle \partial_{\overline{z}_{k}} \delta_{j} f_{j}, f_{k} \right\rangle_{\varphi} + \left\langle \delta_{z_{j}} \partial_{\overline{z}_{k}} f_{j}, f_{k} \right\rangle_{\varphi} \\ &= \left\langle \left[\delta_{z_{j}}, \partial_{\overline{z}_{k}} \right] f_{j}, f_{k} \right\rangle_{\varphi}. \end{split}$$

The commutator equals

$$[\partial_{z_j} - \partial_{z_j} \varphi, \partial_{\overline{z}_k}] = \frac{\partial^2 \varphi}{\partial z_j \partial \overline{z}_k}.$$

So the lower bound becomes

$$\int \sum_{j,k} \frac{\partial^2 \varphi}{\partial z_j \partial \overline{z}_k} f_j f_k e^{-\varphi},$$

where $\frac{\partial^2 \varphi}{\partial z_j \partial \overline{z}_k}$ is the Levi form of $\varphi(f)$. Now we can choose φ to be plurisubharmonic. We will conclude our discussion next time.